
Physics 307 Homework 6

Due Tuesday, 29 October, at 5 PM

This assignment will be modified significantly soon; it is not complete yet.

In this homework assignment a highly elliptical orbits, and then some other things. If you
don’t finish by Tuesday, turn in what you have, and let Nick know when you’ll have the
finished product.

1. Modify your orbit simulation to use either the vector data type in vector.h (if you’re
writing in C) or NumPy arrays to do vector math (if you’re writing in Python).

2. If you’re not familiar with Kepler’s laws of orbital motion, look them up. Does the
behavior of your simulation reflect Kepler’s second law (qualitatively; you do not need
to measure areas!)

3. Now, modify your program to simulate a binary star system with two stars of un-
equal mass– that is, two objects responding to each other’s gravity, in which they are
permitted to move in 3D

Hints:

• If you measure mass in solar masses, G still has a value of 4π2.

• You will now need to use ~F = m~a and ~F = Gm1m2

r212
together to find the accelera-

tions.

• Your count of dynamical variables has now ballooned to twelve, if you think of
components separately:

– x1, y1, z1, vx1 , vy1 , vz1 for the first star

– x2, y2, z2, vx2 , vy2 , vz2 for the second star

• You won’t need to have all this complexity in your code, though, since you’ve
taught your code to do vector math. You really have only four dynamical vari-
ables, each of which is a vector:

– ~s1, ~v1 for the first star

– ~s2, ~v2 for the second star

• The leapfrog prescription is still the same:

(a) Evolve the position variables (both of them!) forward by dt/2

(b) Evolve the velocity variables (both of them!) forward by dt (this is the hard
part)

(c) Evolve the position variables forward by dt/2 again



• The radius vector that appears in the differential equations is now the separation
vector between the two stars. The origin no longer plays any special role in the
dynamics.

• You shouldn’t need to individually address the components of your vectors any-
where in your leapfrog code. (You will when you print things for anim.) If you
think you do, come talk to me and we’ll talk about alternatives.

4. Important: if you don’t want your simulation to “drift” out of the viewport, then you
will want to ensure that the total momentum is zero.

Run your simulation, and monitor conservation of total energy to ensure that it is
behaving properly. You now can’t compute energy per unit mass, since you have two
masses; the total energy will be

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

r12
(1)

5. Now, finally, modify your code to simulate the gravitational interactions of three bodies.
This is no more complicated than two; you just have some copy-paste work to do, since
each object now feels the force from two neighbors, rather than just one.

Play around with what you can create – make things move in three dimensions, etc.
Note that if two bodies get too close together, they will experience a very large force
that is probably too big for your timestep to accurately simulate.

The remainder of this assignment might change significantly over the weekend.
(This text is from last year’s assignment.)

Then, I want you to do one (or both) of the following:

1 Option 1: Detection of exoplanets (this year’s Nobel

Prize)

Planets are small, close to stars, and don’t give off their own light. They are very difficult to
see directly with telescopes, although we can get some signatures if they go directly in front
of their stars and block a bit of the light.

The easiest way to detect exoplanets – planets around stars other than our own – is to look for
stars that are wobbling around a bit due to the influence of their planets’ gravity. Even the



gravity from the Earth causes the Sun to move. It turns out it is quite easy to detect changes
in whether a star is moving toward or away from us using Doppler spectroscopy. Waves (light
or sound) coming from an object moving toward us are shifted toward higher frequency (and
thus bluer color); waves coming from an object moving away from us are shifted toward lower
frequency (redder color). Gases in the atmospheres of stars emit and absorb very precise
wavelengths of light based on the energy levels in the atoms; by very precise measurements
of how these wavelengths shift around, we can use the Doppler effect to detect “wobbling
stars” – ones that likely have planets. Modern spectrometers can detect radial motion of
stars as little as one meter per second, with an extra factor of ten in sensitivity coming soon
(0.1 m/s!)

Yep, that’s right – we soon should be able to see stars hundreds of light years away moving
at ten centimeters per second by looking very closely at their colors.

Simulate the following and look at the motion of the star. Plot one component of its velocity
and determine the size of the fluctuations. Comment on (1) the possibility of detecting such
a planet using this method, and (2) any interesting consequences you think such a detection
would have for the possibility of extraterrestrial life.

• Earth orbiting the Sun. Earth has a mass of 3× 10−6 solar masses.

• 51 Pegasi b orbiting 51 Pegasi. (You’ll need to look up their parameters.)

• Jupiter orbiting the Sun. Jupiter has a mass of 0.001 solar mass (300 Earths) and
orbits roughly 5 AU from the Sun. (You’ll need to work out initial conditions for a
nearly-circular orbit with radius 5 AU.)

• A “super-Earth” of mass 1.5 × 10−5 solar masses (5 times the mass of the Earth)
orbiting Proxima Centauri, a small star with a mass of 0.12 solar mass, at a radius of
0.1 AU away

2 Option 2: Milankovitch cycles

The Earth’s orbit is a little bit elliptical, but its eccentricity is not constant; instead, its
eccentricity fluctuates over timescales of hundreds of thousands of years because of the
gravitational influence of Jupiter (mostly) and Saturn. These fluctuations in eccentricity are
responsible for the recent cycle of ice ages and interglacial periods, as I’ll talk about in class.

Simulate the Earth, Sun, and Jupiter. (Earth has a mass of 3 × 10−6 solar masses; Jupiter
has a mass of 0.001 solar mass and orbits about 5 AU away.)



Jupiter’s orbit is a little bit elliptical and this is important for this simulation; to simulate
this, set Jupiter’s initial velocity to 2π/

√
rJ × 0.95. The first bit is the initial condition that

gives a circular orbit; the factor of 0.95 controls the eccentricity.

Then, you’ll need to modify your code to track the eccentricity of the Earth. The eccentricity
depends on the aphelion and perihelion (furthest and closest distance to the Sun) – the wider
the spread, the more eccentric. It took me a bit to figure out how to do this; I wound up using
the following code that keeps track of the distance of the Sun on three successive timesteps
to look for extrema, and prints out the eccentricity every hundred orbits. (You may copy
this code, modifying it as you need.)

r_old_old=r_old;

r_old=r_now;

r_now=hypot(x1-x2, y1-y2);

if (r_old < r_old_old && r_old < r_now) // we are at perihelion

{

r_peri = r_old;

}

if (r_old > r_old_old && r_old > r_now) // we are at aphelion

{

aphs++;

if (aphs % 100 == 0)

eccentricity = (r_aph-r_peri)/(r_aph+r_peri);

printf("!%e %e\n",t, eccentricity);

r_aph = r_old;

}

One challenge for this project is that you will need to simulate many tens of thousands
of years to see the eccentricity drift. You will need to use a small enoguh timestep to
accurately simulate the small changes in eccentricity; I found that 10−4 years was sufficient.
But you’ll need to run it for a very long time; this means you’ll need to run for quite a while
to accumulate enough data. You’ll need to either not animate your results or use a large
frameskip to achieve this.

Show a plot of eccentricity vs. time like the one I showed in class. Then compare this to the
actual fluctuations of the Earth’s eccentricity, the first green trace on the plot on the next
page. Are they similar in character? How do they differ? Look at the Wikipedia page on
“Milankovitch cycles” for background if you want.





Hints: Avoiding solar system drift

The total momentum of a system of two stars is

~p = m1~v1 +m2~v2

This gives a center-of-mass velocity of

~vcom =
m1~v1 +m2~v2
m1 +m2

By calculating this value and subtracting it from each of your objects’ initial velocities, you
ensure that the total center-of-mass velocity (and thus the total momentum) is zero, and
your simulation won’t drift. This can be done with code like the following:

double vxc,vyc; //center-of-mass velocities

vxc = (m1*vx1 + m2*vx2) / (m1+m2);

vyc = (m1*vy1 + m2*vy2) / (m1+m2);

vx1 = vx1 - vxc;

vy1 = vy1 - vyc;

vx2 = vx2 - vxc;

vy2 = vy2 - vyc;


