
Notes on numerical solution of differential equations

Some definitions, for those who don’t know:

• A ”differential equation” is any equation that relates a thing to its derivatives. For instance, Newton’s

second law of motion for a mass bouncing on a string can be written −kx = m∂2x
∂t2

, where I’ve put in
Hooke’s law for the force.

• A “system of differential equations” is a group of equations that relate a bunch of things to their
derivatives.

• A “first-order differential equation” is one involving only first derivatives.

• A “second-order differential equation” involves second derivatives.

A great many physics phenomena are described by (systems of) differential equations, so we need a way to
solve them numerically. In our class, we’re going to focus on time-variation problems of the following form:

Given the initial state of some system y, and the differential equation(s) that tell us how y
changes with time, figure out what the system y looks like for all future times – that is, find
y(t).

For instance, we are very interested in computing the motions of objects, the evolution of electromagnetic
fields, the propagation of heat, and so on, and these techniques give us a way to study that.

In general, these situations often take the form of a set of coupled second-order differential equations.
However, such a situation can be reduced to a set of first-order DE’s. So, in these notes I will build up the
general case in three steps:

• A single first-order DE: the cooling cup of tea

• A single second-order DE: the swinging pendulum

• Many second-order DE’s: celestial motion

1 Euler’s method for a single first-order DE

Throughout I will use time as the independent variable, since this is usually the case we care about. However,
everything works the same if some other coordinate is the independent variable.

A first-order differential equation has the form

∂y

∂t
= f(y, t) (1)

where y is a generic dependent variable and f(y, t) gives its rate of change over time as a function of its
value (and, sometimes, the time). Note the notation: f here is not an arbitrary function, but the specific
function that tells you how fast y changes. A specific example is Newton’s law of cooling

1

∂T

∂t
= f(t) = −k(T − Ta) (2)

which is the first problem you’ll be solving. In words, it just says that an object cools at a rate
proportional to the difference in temperature between it and the room around it.

This is the same behavior as you get from a charging/discharging capacitor (in electronics), incidentally. It
behaves like this:

The behavior of a cooling thermos of tea (in a very hot room!) The green plot gives the temperature of the tea; the red line
represents the ambient temperature of 50◦ C (perhaps you’re in Arizona in June, or the Physics Clinic in April!)

We need to figure out how to make a computer calculate this. The solution, as with most things in compu-
tational physics, involves thinking about how you would get a bunch of middle-schoolers with calculators to
do it, then simply telling the computer to do that.

Let’s make a table. For illustration, I’ll use k = 0.5min−1, with Ta = 50 and T0 = 100 – that is, we’re
starting with tea at 100 degrees that is cooling down in a room that is 50 degrees.

Time (min) Temp (C) Slope: ∂T
∂t

0 100
1
2
3
4
5

Our job is to fill in all the missing temperatures, using the only information we have, the differential equation

∂T

∂t
= −k(T − Ta).

This equation tells us the slope of the curve, given the current temperature T ; it comes out to (100−50)×0.5
= 25 degrees per minute.

I can show what I know now both in tabular form and as a graph:

2

Time (min) Temp (C) Slope: ∂T
∂t

0 100 -25
1
2
3
4
5

Here the black circle at (t = 0, T = 100) indicates that I know the temperature is 100 degrees at t = 0; the
blue dotted line shows my knowledge of the slope at this point.

Well, if I need to estimate the temperature after 1 minute, and I know the tea is cooling at 25 degrees per
minute, then I should just guess that the T (1) = 100 − 25 = 75 degrees. Graphically, what I’m doing is
evaluating the slope at (t = 0, T = 100) and following that down to t = 1.

Time (min) Temp (C) Slope: ∂T
∂t

0 100 -25
1 75 -12.5
2
3
4
5

Now I have some new information on both my table and graph: the point (t = 1, T = 75), and the ability to
calculate that the slope here is −12.5 degrees per minute. That’s reflected in both the chart and the graph
above.

You should be able to see how this goes at this point: we figure out the current slope from the current
temperature, and then use the current temperature and that slope to estimate the next temperature. Taking
more steps we get:

3

Time (min) Temp (C) Slope: ∂T
∂t

0 100 -25
1 75 -12.5
2 62.5 -6.25
3
4
5

Time (min) Temp (C) Slope: ∂T
∂t

0 100 -25
1 75 -12.5
2 62.5 -6.25
3 56.25 -3.125
4
5

And taking two more steps:

Time (min) Temp (C) Slope: ∂T
∂t

0 100 -25
1 75 -12.5
2 62.5 -6.25
3 56.25 -3.125
4 53.125 -1.5625
5 51.5625 0.78125

This last figure also shows the “exact” solution. What has gone wrong? You can probably guess: during
that first minute, we used a cooling rate of 25 degrees per minute. However, as the tea cools, its cooling rate
goes down: it wasn’t 25 deg/min for that entire time, only at the very start. You probably have two ideas
for what I should do:

• Use smaller steps

• Do something akin to the midpoint rule

4

We’ll talk about the equivalent to the midpoint rule later. Smaller steps help, as you might expect. Here
I’m using a step of 0.5 minute on the left, and 1 minute on the right:

You can see by eye that the error here is smaller.

The Euler method consists of doing the simplest thing you can think of: you approximate the value of the
function at the end of each timestep by its value at the beginning, plus the rate of change times the length.
In symbols,

y(t+ h) = y(t) + hf [y (t)] ; (3)

that is, the value after a timestep is equal to the value before the step, plus the length of the step times the
rate of change. Since we need a value of y to evaluate the rate of change, we use the value at the beginning
of the interval y(t). For instance, for Newton’s law of cooling, f(T) = −k(T − Ta), and Euler’s algorithm is

T (t+ h) = T (t)− hk(T − Ta) (4)

Since this uses a left-hand-rule-type approach (estimate the slope during the interval using its value at the
beginning), This is a “first-order” algorithm.

You’ve now learned how to solve first-order differential equations (here “first-order” means that the DE
includes only first derivatives, as opposed to “first-order” in the previous sentence – damn mathematicians!).

We now have two possible next steps:

• Learn how to do something like the midpoint rule, to get better accuracy for a given timestep

• Learn how to handle second-order differential equations, like Newton’s second law

You can learn about those in any order; I’ll introduce the midpoint-like algorithm first.

5

2 The RK2 algorithm

The RK2 algorithm is analogous to the midpoint rule. Here, we would like to use the function’s slope halfway
through the interval, rather than at the beginning. We’d like to do something like this:

y(t+ h) = y(t) + hf

[
y

(
t+

h

2

)]
; (5)

The only trouble is that we don’t know y
(
t+ h

2

)
– in the Newton’s law of cooling example, the temperature

halfway through the interval. However, we can estimate it using the Euler method:

y(t+
h

2
) = y(t) +

h

2
f [y (t)] ; (6)

This gives the following procedure for RK2:

1. Take an Euler-method half step to estimate the value of the variable y at t+ h/2

2. Use that value y(t+ h/2) to compute the slope over the whole interval, and take a full step using that
slope

In symbols, we have

y

(
t+

h

2

)
=y(t) +

h

2
f [y (t)] (7)

y(t+ h) =y(t) + hf

[
y

(
t+

h

2

)]
(8)

Let me now illustrate this in pictures, using dt = 1 minute. Our procedure is:

• Use the temperature we know at (at (t = 0, T = 100) to compute the slope there

• Follow that slope out for a time interval equal to dt/2 (half a minute) to get an estimate of the
temperature at t = 0.5 minute, the midpoint of the interval

• Use this estimate of the temperature at 0.5 minute to compute an estimate of the slope during the
whole interval. This uses the same logic as the midpoint rule: “the average slope during the interval”
(the thing we want) is well-estimated by “the slope at the midpoint of the interval”.

• Based on that estimate of the slope, starting with the original temperature value at the beginning of
the interval, figure out the temperature at the end.

• Repeat until golden brown around the edges.

6

• The circle is the point we started with

• The blue dotted line is the estimate of the slope
at that temperature, T (0)

• The square is the estimate of the temperature
halfway through the step, Thalf

• The green dashed line is the revised estimate of
the slope during the interval, based on the value
of Thalf .

Now, this is where we are:

• Important: notice that the first step is taken
starting from the beginning value – the point
(0, 100) – rather than the halfway estimate. The
halfway estimate is used only to estimate the
slope used for the full step, and then forgotten.

• The black line represents the first full step (which
becomes part of our solution). The blue dotted
line is the slope estimate at T (1), used to cal-
culate an estimate for the next value of Thalf ;
the green dashed line is the estimate of the slope
based on that temperature, which we will use for
the third step...

• ... and so on.

Comparing this RK2 method to Euler’s method shows how much more accurate it is for the same stepsize:

7

3 Euler’s method for a single second-order DE

A second-order differential equation can be reduced to two first-order DE’s. In general, given the second-order
differential equation

∂2y

∂t2
= f(y) (9)

we can separate it into two first-order DE’s:

∂y

∂t
=ẏ (10)

∂ẏ

∂t
=f(y, ẏ) (11)

at the cost of introducing an extra dynamical variable ẏ. Dynamical variables are simply those variables that
the simulation is evolving through time – for instance, positions and velocities.

Then you do a straightforward Euler update for each:

y(t+ h) =y(t) + hẏ(t) (12)

ẏ(t+ h) =ẏ(t) + hf [y(t), ẏ(t)] (13)

As an example, for the swinging pendulum in your homework we have

∂θ

∂t
=ω (14)

∂ω

∂t
=− g/L sin θ (15)

8

and the Euler update looks like

θnew =θold + hωold (16)

ωnew =ωold + h
g

L
sin θold (17)

(18)

where I have used some new notation that should be easy to figure out.

4 RK2 for a single second-order DE

The approach here is just the same. The only trick is that you must take both half-steps together, since you
need both y and ẏ evaluated at the halfway point to take the full step. The algorithm can be written

y (t+ h/2) =y(t) +
h

2
ẏ(t)

ẏ (t+ h/2) =ẏ(t) +
h

2
f [y(t), ẏ(t)]

y(t+ h) =y(t) + hẏ(t+ h/2)

ẏ(t+ h) =ẏ(t) + hf [y (t+ h/2) , ẏ (t+ h/2)]

For the pendulum in particular, our y is the angle θ and ẏ is the angular velocity ω. Thus we have:

θ1/2 =θold +
h

2
ωold

ω1/2 =ωold −
h

2

g

L
sin θold

θnew =θold + hω1/2

ωnew =ωold − h
g

L
sin θ1/2

5 Euler’s method for a system of many DE’s

In general, a large system of DE’s with N dynamical variables (which may be a combination of velocities
and positions, as in the previous example, or may be something else) may be written

9

∂y1
∂t

=f1(y1, y2, y3, y4...)

∂y2
∂t

=f2(y1, y2, y3, y4...)

∂y3
∂t

=f3(y1, y2, y3, y4...)

∂y4
∂t

=f4(y1, y2, y3, y4...),

where each rate of change fi depends on all of the dynamical variables yi. In compact vector form, we can
represent the vector of dynamical variables as ~y and their rates of change as ~f(~y). This is a vector function
(it gives us a rate of change for each yi) which has a vector parameter (it needs the value of all yi’s). Then
the collection of DE’s can be written simply as

∂~y

∂t
= ~f(~y) (19)

and the Euler algorithm becomes

~y(t+ h) = ~y(t) + h~f [~y (t)] ; (20)

Note that all I did here is put vector signs over everything. It is easiest to understand how these algorithms
work if you think of your collection of dynamical variables as a single object, and perform any operations on
all of them at once. For HW4, for instance, you have four of them.

6 RK2 for a system of many DE’s

You should already be able to guess how this goes: this is the same as RK2 for a single variable, except now
we think about updating an entire set (which I’ve written as ~y) of dynamical variables. Some of these may
be position variables (in which case their rate of change is a corresponding velocity variable), and some may
be velocity variables (in which case their rates of change are given by Newton’s second law), but it doesn’t
matter; the procedure is just “do a half-step for everything to get the values at the midpoint, and then use
those values to do a full step”.

We can write this in vector form as follows:

~y(t+
h

2
) =~y(t) +

h

2
~f [~y (t)] (21)

~y(t+ h) =~y(t) + h~f

[
~y

(
t+

h

2

)]
(22)

where I have just scribbled vector signs above all the y’s and h’s that appeared in the one-equation RK2. It
really is the same – you just need to update a set of variables, rather than just one.

10

7 Orbits around a fixed star

Since planets orbit in a plane, we can restrict ourselves to the x−y plane. This means we need four dynamical
variables: x, y, vx, andvy. Let’s put the Sun at the origin; then our variables tell us the position and velocity
of the planet. We are going to have the set of DE’s

ẋ =vx (23)

ẏ =vy (24)

v̇x =ax (25)

v̇y =ay (26)

(27)

Now we just need to figure out what ax and ay are.

Newton’s law of gravity tells us

~Fg = (−r̂)GMm

r2
(28)

where r̂ is a unit vector pointing from the Sun to the planet, M is the mass of the Sun, and m is the mass of
the planet. To compute the acceleration due to this force, we can use Newton’s second law, which gives us

m~a = (−r̂)GMm

r2
→ ~a = (−r̂)GM

r2
(29)

Since we will be working in Cartesian coordinates, we need to find the xi and y− components of ~a. This is
done readily with the r̂−trick. Note that

r̂ =
~r

|r|
. (30)

This makes sense: r̂ is a vector in the direction of r, but with length 1, so we just take ~r and divide it by
its length |r|. Going forward I will drop the absolute value signs: r ≡ |r| =

√
x2 + y2. Now we convert

everything into x and y components:

~rx = x (31)

~ry = y (32)

r̂x =
x

r
(33)

r̂y =
y

r
(34)

r =
√
x2 + y2 (35)

11

We can substitute this into Newton’s law of gravity to get the x and y coordinates of the acceleration, which
are what we want:

~a =(−r̂)GM
r2

(36)

~a =(−~r)GM
r3

(37)

ax =
−GMx

r3
(38)

ay =
−GMy

r3
(39)

where r =
√
x2 + y2. This gives us what we need: four DE’s that give the rates of change of our four

dynamical variables:

ẋ =vx (40)

ẏ =vy (41)

v̇x =
−GMx

(x2 + y2)
3
2

(42)

v̇y =
−GMy

(x2 + y2)
3
2

(43)

(44)

12

