anim, an easy-to-use animation routine

1 Introduction
Anim is a utility for drawing 2D or 3D graphics that is language-agnostic and easy for students
to learn and use.

The normal usage is to write a program in any language (Python, C, Fortran, COBOL,
whatever...) that prints graphics commands to its standard output using the language’s
built-in print feature, then pipe this output to anim with

./myprogram | anim
or
python myprogram.py | anim

This provides a language-agnostic graphics capability that requires no additional computer
science knowledge, beyond printing text, from students. It runs in Linux or Mac OS.

The program can operate in either 2D or 3D mode, and will automatically choose 3D mode
if any 3D drawing commands are received.

2 Installation

2.1 Linux

You will first need to install a few packages to get OpenGL support and support for screen-
shots.. On an Ubuntu system, do

e sudo apt install freeglut3-dev libglew-dev libpng-dev imagemagick libpng-dev

Then you can do:

e make anim
e make demos

e sudo make install (which copies anim into /usr/local/bin; alternatively, copy
anim into your system path somewhere else)

2.2 Mac OS

Type the following:

e make anim-mac
e make examples

e sudo make install (which copies anim into /usr/local/bin; alternatively, copy
anim into your system path somewhere else)

(You will get some warnings about OpenGL 2 system calls being deprecated, but the program
will still work.)

3 Usage

Anim is a frame-based drawing utility. Rather than displaying graphics as it receives com-
mands, it displays graphics one complete frame at a time, allowing the creation of smooth
animations. No graphics will be displayed until anim receives a flush frame command; at
that point, the completed frame containing all objects drawn up to that point is displayed.
Any subsequent graphics commands will be stored up for the next frame, and displayed
once the next flush frame command is received, and so on. A typical usage is to include
many drawing commands followed by a flush command within a simulation loop, drawing
one frame of animation every one (or more) simulation intervals.

The input commands are as follows:

3.1 Drawing commands

o 1 21 yl 22 y2 — draw a line from (x1,y1) to (x2,y2)

o L z1 yl 22 y2— draw a line from (x1,y1) to (x2,y2) relative to the viewport (objects
that should remain stationary on screen even if the viewport is scaled; see the sample
program overrelax for an example)

e ¢ z yr—draw a circle at (x,y) with radius r
e C r g b— change the current drawing color to the given RGB color

e t z y— Print some text at coordinates x,y. The text that will be printed is entered as
the next line of input.

e T z y— Print some text at coordinates x,y relative to the viewport. This is useful for
creating text readouts that will not move as the viewport is moved/rescaled. Again,
this is a two-line command, with the text to be printed on the next line.

3.2

3.3

Drawing commands, 3D-specific

13 21 yl 21 22 y2 22 — draw a line from (x1,y1,22) to (x2,y2,22)
c3 =y z r— draw a sphere at (x,y,z) with radius r

ct3 index x y z r — draw a sphere at (x,y,z) with radius r, and additionally create a
trail behind it. Since you might want multiple objects with trails, this command also
requires a trail index. (If you want only one trail, set the index to 0.)

trl index length — set the length of the trail with the given index

t3 z y z— Print some text at coordinates x,y,z. The text that will be printed is entered
as the next line of input.

g3 x1 yl 21 z2 y2 22 x8 y3 28 x4 y4 24 — Draw a quadrilateral with the specified
endpoints (this is useful for making meshes).

Control commands
A z— Turn on (x=1) or off (x=0) the display of axes.

S scale — rescale the window, such that the distance from the center to the edge is
scale, without changing the angle of view.

S3 wviewdist — change the perspective, so that the subject is viewed from viewdist units
away, without changing its apparent size

screenshot — take a screenshot and save it. It will be given a default name (anim.png
or anim-(number).png) if you don’t specify one; you can also specify a filename.

center3 z y z — center the window at coordinates x,y,z

l'text — Print text to standard output (so your program can still print text to the
terminal, or to a log file)

F — Flush the current frame to the screen
FG — Flush the current frame to the screen, and also add it to the animated gif

endgif <name> — Create an animated gif out of the frames flushed with FG; if you
don’t specify a name, a default will be used

The ! command deserves special mention. The remainder of any input line prefixed by an
I will be printed to stdout, bypassing anim’s need to hijack the stdout of your program to
receive graphics commands. Thus, you can do things like . /myprog | anim > output.txt;
all lines beginning with a ! will be written to output.txt (without the !’s), while all other
lines will be interpreted by anim as graphics directives (or ignored if they make no sense to
anim).

The commands that display text in the anim window (t, T, and t3) are all two lines long;
the second line contains the text to be printed.

If you don’t specify a value for the scale, framerate, etc., sensible defaults will be chosen.
In the default scale the viewport runs from (-1.2, -1.2) to (1.2, 1.2), with axes enclosing the
space (-1,-1) to (1,1).

3.4 Runtime control

The display of anim can be controlled somewhat with keyboard and mouse input into the
window while it is running. The available commands are:

e WASD: move around (2D mode)

e WS/AD/QE: rotate (3D mode)

e shift-Q: quit

e shift-P: take a screenshot and save with a default name

e shift-I: invert brightness (for projectors in classrooms)

e shift-A: toggle axes

e -/=: zoom in/out (change the scale of the drawing)

e shift -/=: move the viewing position in/out, keeping the magnification fixed (changes

prevalence of perspective effect)

You can also click and drag to move around and use the mousewheel to zoom in and out,
although using the mousewheel may only work on Linux systems.

When anim is closed, it will remember the window size, viewport location and scale, 3D
rotation angles, and the like.

3.5 3D mode detalils

The 3D mode lights the scene with a fixed light coming from the +z direction, along with a
dimmer ambient light. If anyone is interested in the ability to adjust (either with interactive
keyboard control in anim itself, or with text commands), please let me know and I'll add
this.

4 Sample and demo code

To compile the demo codes that are in C, just do make demos.

4

4.1 pendulum-basic.py

This shows the basic structure of using anim to animate a swinging pendulum. In Python:
just do python pendulum-basic.py | anim (or python3 pendulum-basic.py | anim if
needed on your machine).

4.2 frameskip-illustration.py

This code shows a simple way of simulating multiple timesteps per frame of animation, as a
variant on the previous; it runs just as fast, but uses a smaller timestep for more accuracy.

4.3 kepler-problem

This program in C models an orbit, demonstrating 3D mode and drawing motion with trails.
Just run ./kepler-problem | anim.

4.4 modified-kepler-problem

This program in C models an orbit with modified Newtonian gravity where the power law
is not exactly inverse square, as happens in the regime where GR corrections matter. You
should be able to see the orbit precess over time.

4.5 pendulum-parallel.py

This program in Python simulates multiple swinging pendula at once, demonstrating the
amplitude-period connection, and illustrating how to build more complex 3D things in anim.

4.6 string-parallel

This program in C++ simulates multiple vibrating strings, showing a variety of nonlinear
effects. Running ./string-parallel | anim with no arguments will simulate the N = 2
normal mode with a variety of amplitudes, and also print out the order of command-line
arguments if you want to change the behavior.

4.7 membrane

This program in C++ simulates a vibrating circular membrane. Running it with no argu-
ments will simulate a Gaussian bump initial condition; you can also specify a Bessel function

(normal mode) with ./membrane b (angular mode number) (radial mode number).

